Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
! 04. 11. 2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
17. 01. 2016 (Jel.) Rok 2016 s novými a novějšími krystaly od kolegy Pavla!
17. 01. 2016 (Jel.) Nabídka knih z oborů matematiky, fyziky, chemie
23. 10. 2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 07. 03. 2016 11:57

stuart clark
Příspěvky: 752
Reputace:   
 

Given det(AB)=4, Then det(BA), where A and B are not square matrix

If $A$ is a matrix of order $2\times 3$ and $B$ is a matrix of order $3\times 2$ and $\det(AB)=4\;,$ Then $\det(BA)=$

Offline

 

#2 07. 03. 2016 12:39

vanok
Příspěvky: 12118
Reputace:   694 
 

Re: Given det(AB)=4, Then det(BA), where A and B are not square matrix

Hi ↑ stuart clark:,
$\det(AB)=4\neq 0\;,$, give $ rg (A)=rg(B)=2$,
so $rg(BA) \leq 2$ and $\det(BA)=0$


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Online

 

#3 07. 03. 2016 13:02

stuart clark
Příspěvky: 752
Reputace:   
 

Re: Given det(AB)=4, Then det(BA), where A and B are not square matrix

Thanks ↑ vanok:, would you like to explain  me in detail

Offline

 

#4 08. 03. 2016 00:25

Pavel
Místo: Ostrava/Rychvald
Příspěvky: 1754
Škola: OU
Pozice: EkF VŠB-TUO
Reputace:   130 
 

Re: Given det(AB)=4, Then det(BA), where A and B are not square matrix

↑ stuart clark:

Let us define matrices

$
\mathbf A=
\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}
\end{pmatrix},
\quad
\mathbf B=
\begin{pmatrix}
b_{11} & b_{12}\\
b_{21} & b_{22}\\
b_{31} & b_{32}
\end{pmatrix},
\quad
\mathbf C=\mathbf A\cdot\mathbf B=
\begin{pmatrix}
c_{11} & c_{12}\\
c_{21} & c_{22}
\end{pmatrix}.
$

Let us assume that $\text{rank}\,(\mathbf A)\neq 0\neq \text{rank}\,(\mathbf B)$. Using vector notation we have

$
(c_{11},c_{12})&=a_{11}(b_{11},b_{12})+a_{12}(b_{21},b_{22})+a_{13}(b_{31},b_{32})\\
(c_{21},c_{22})&=a_{21}(b_{11},b_{12})+a_{22}(b_{21},b_{22})+a_{23}(b_{31},b_{32}).
$

If $\text{rank}\,(\mathbf B)=1$ then the vectors $(c_{11},c_{12})$, $(c_{21},c_{22})$ would be linearly dependent and $\det(\mathbf A\cdot\mathbf B)=0$ which is not true.

Considering the fact that $\text{rank}\,(\mathbf B)<3$ we have $\boldsymbol{\text{rank}\,(\mathbf B)=2}$.

On the other hand we have

$
\begin{pmatrix}
c_{11}\\
c_{21}
\end{pmatrix}
&=b_{11}
\begin{pmatrix}
a_{11}\\
a_{21}
\end{pmatrix}
+
b_{21}
\begin{pmatrix}
a_{12}\\
a_{22}
\end{pmatrix}
+
b_{31}
\begin{pmatrix}
a_{13}\\
a_{23}
\end{pmatrix}\\
\begin{pmatrix}
c_{12}\\
c_{22}
\end{pmatrix}
&=b_{12}
\begin{pmatrix}
a_{11}\\
a_{21}
\end{pmatrix}
+
b_{22}
\begin{pmatrix}
a_{12}\\
a_{22}
\end{pmatrix}
+
b_{32}
\begin{pmatrix}
a_{13}\\
a_{23}
\end{pmatrix}
$

If $\text{rank}\,(\mathbf A)=1$ then the vectors $\begin{pmatrix}
c_{11}\\
c_{21}
\end{pmatrix}$, $\begin{pmatrix}
c_{12}\\
c_{22}
\end{pmatrix}$ would be linearly dependent and $\det(\mathbf A\cdot\mathbf B)=0$.

Therefore $\boldsymbol{\text{rank}\,(\mathbf A)=2}$.

Next let us define a matrix $\mathbf D$ such that

$
\mathbf D=\mathbf B\cdot\mathbf A=
\begin{pmatrix}
d_{11} & d_{12} & d_{13}\\
d_{21} & d_{22} & d_{23}\\
d_{31} & d_{32} & d_{33}
\end{pmatrix}
$

Similarly as in the previous cases we have

$
(d_{11},d_{12},d_{13})&=b_{11}(a_{11},a_{12},a_{13})+b_{12}(a_{21},a_{22},a_{23})\\
(d_{21},d_{22},d_{23})&=b_{21}(a_{11},a_{12},a_{13})+b_{22}(a_{21},a_{22},a_{23})\\
(d_{31},d_{32},d_{33})&=b_{31}(a_{11},a_{12},a_{13})+b_{32}(a_{21},a_{22},a_{23}).
$

From the fact that $\text{rank}\,(\mathbf A)=2$ we deduce that the vectors $(d_{11},d_{12},d_{13})$, $(d_{21},d_{22},d_{23})$, $(d_{31},d_{32},d_{33})$ are linearly dependent which implies $\color{blue}\det(\mathbf B\cdot\mathbf A)=0$


Backslash je v TeXu tak důležitý jako nekonečno při dělení nulou v tělesech charakteristiky 0.

Offline

 

#5 08. 03. 2016 17:04 — Editoval vanok (08. 03. 2016 17:06)

vanok
Příspěvky: 12118
Reputace:   694 
 

Re: Given det(AB)=4, Then det(BA), where A and B are not square matrix

Hi ↑ stuart clark:,
As regards possible complements for the given solution, there is 2 ways.
The first one is to take advantage your first course of linear algebra (normally made in first year of university); and specially call back it two theorems
The determinant of a matrix M, of type (n, n) is no zero iff his rank $rg(M)$  is n.
And also
$rg (AB) \leq min (rg (A), rg (B))$ A,B matrices of type (m,n),(n,m) resp.
and simply to apply.
(It is my method).

Other method, (for the high of grammar schools) is the one used by ↑ Pavel: but which is applicable only to this particular situation.


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Online

 

#6 08. 03. 2016 23:49

Pavel
Místo: Ostrava/Rychvald
Příspěvky: 1754
Škola: OU
Pozice: EkF VŠB-TUO
Reputace:   130 
 

Re: Given det(AB)=4, Then det(BA), where A and B are not square matrix

↑ vanok:

The method, I described former, can be used also for matrices of general type $m\times n$, resp. $n\times m$ with $m\neq n$ not only in this particular case.


Backslash je v TeXu tak důležitý jako nekonečno při dělení nulou v tělesech charakteristiky 0.

Offline

 

#7 09. 03. 2016 08:26

vanok
Příspěvky: 12118
Reputace:   694 
 

Re: Given det(AB)=4, Then det(BA), where A and B are not square matrix

↑ Pavel:,
A lot of courage for your next exercise with n = 100 and m = 200.


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Online

 

#8 09. 03. 2016 16:38

Pavel
Místo: Ostrava/Rychvald
Příspěvky: 1754
Škola: OU
Pozice: EkF VŠB-TUO
Reputace:   130 
 

Re: Given det(AB)=4, Then det(BA), where A and B are not square matrix

↑ vanok:

Let A be a 100x200 matrix, B be a 200x100 matrix such that det(AB)=4. Prove that det(BA)=0.

Solution:

Let $\mathbf A=\left(a_{i,j}\right)_{\substack{1\leq i\leq 100\\1\leq j\leq 200}}$, $\mathbf B=\left(b_{i,j}\right)_{\substack{1\leq i\leq 200\\1\leq j\leq 100}}$, $\mathbf C=\mathbf A\cdot\mathbf B=\left(c_{i,j}\right)_{\substack{1\leq i\leq 100\\1\leq j\leq 100}}$ and $\mathbf D=\mathbf B\cdot\mathbf A=\left(d_{i,j}\right)_{\substack{1\leq i\leq 200\\1\leq j\leq 200}}$. Let us denote

$
\vec a_{i*}&:=(a_{i,1},a_{i,2},\dots,a_{i,200})\\
\vec a_{*j}&:=(a_{1,j},a_{2,j},\dots,a_{100,j})\\
\vec b_{j*}&:=(b_{j,1},b_{j,2},\dots,b_{j,100})\\
\vec b_{*i}&:=(b_{1,i},b_{2,i},\dots,b_{200,i})\\
\vec c_{i*}&:=(c_{i,1},c_{i,2},\dots,c_{i,100})\\
\vec c_{*i}&:=(c_{1,i},c_{2,i},\dots,c_{100,i})\\
\vec d_{j*}&:=(d_{j,1},d_{j,2},\dots,d_{j,200})\\
\vec d_{*j}&:=(d_{1,j},d_{2,j},\dots,d_{200,j}),\qquad i=1,\dots,100,\ j=1,\dots,200.
$

Then the following identity holds true for $i=1,\dots,100$:

$
\vec c_{i*}=\sum_{k=1}^{200}a_{i,k}\cdot \vec b_{k*}
$

Among 200 100-dimensional vectors $\vec b_{j*}$, $j=1,\dots,200$ there exist at most 100 vectors $\vec b_{{j_t}*}$, $t=1,\dots,100$ that are linearly independent. If $\text{rank}\,(\mathbf B)\leq 99$ then all the vectors $\vec c_{1*},\vec c_{2*},\dots,\vec c_{100*}$ would be linearly dependent and $\det(\mathbf A\cdot\mathbf B)=0$. Hence $\text{rank}\,(\mathbf B)=100$.

There is a similar identity for the vectors $\vec c_{*i}$ with $i=1,\dots,100$:

$
\vec c_{*i}=\sum_{k=1}^{200}b_{k,i}\cdot \vec a_{*k}
$

For the same reasons as in the previous case we can deduce that if $\text{rank}\,(\mathbf A)\leq 99$ then all the vectors $\vec c_{*1},\vec c_{*2},\dots,\vec c_{*100}$ would be linearly dependent and $\det(\mathbf A\cdot\mathbf B)=0$. Hence $\text{rank}\,(\mathbf A)=100$.

We also have for $j=1,\dots,200$

$
\vec d_{j*}=\sum_{k=1}^{100}b_{j,k}\cdot \vec a_{k*}.
$

Due to the fact that $\text{rank}\,(\mathbf A)=100$ we infer that the vectors $\vec d_{j*}$, $j=1,\dots,200$, are linearly dependent.

Thus

$\color{blue}\det(\mathbf B\cdot\mathbf A)=0$

If you wish to examine another case, e.g. $n=1000$ and $m=2000$, I will be glad to show you.


Backslash je v TeXu tak důležitý jako nekonečno při dělení nulou v tělesech charakteristiky 0.

Offline

 

#9 09. 03. 2016 16:54

vanok
Příspěvky: 12118
Reputace:   694 
 

Re: Given det(AB)=4, Then det(BA), where A and B are not square matrix

And it not much costs you to generalize your results and to put you to the same level that I.
Then well continuation.
( I notice that in analysis you used by the very complicated theorems and that in algebra on the contrary you always want to take back,  algebraic demonstrations for every result)


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Online

 

#10 13. 03. 2016 22:12 — Editoval stuart clark (13. 03. 2016 22:14)

stuart clark
Příspěvky: 752
Reputace:   
 

Re: Given det(AB)=4, Then det(BA), where A and B are not square matrix

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson