Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
! 04. 11. 2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
17. 01. 2016 (Jel.) Rok 2016 s novými a novějšími krystaly od kolegy Pavla!
17. 01. 2016 (Jel.) Nabídka knih z oborů matematiky, fyziky, chemie
23. 10. 2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 14. 06. 2017 22:03 — Editoval s-o-k-o-l (14. 06. 2017 22:56)

s-o-k-o-l
Příspěvky: 377
Reputace:   
 

Výpočet rezidua

Dobrý den,
chtěl bych poprosit o pomoc v následujícím příkladu: Pomocí reziduové věty vypočtěte $\int_{_{}\varphi }\frac{1}{z+2}\cdot \cos \frac{1}{z}dz$

---------------------------------------------------------------------------------------------------------------------------------------
Šel jsem na to přes výpočet rezidua v bodě -2, což vyšlo $2\pi i\cdot \cos \frac{1}{2}$
Ale nastal problém u $\frac{1}{z}$. Přednášející mi poradil, abych využil věty
$rez_{z = \infty}f(z)+\sum_{j=1}^{n}rez_{z = z_{j}}f(z)=0$

Tedy stačilo by mi vypočítat reziduum v nekonečnu a pak bych dostal výsledek, který hledám. Tedy použiju tuto větu:
http://forum.matematika.cz/upload3/img/2017-06/70755_rez.png

Nakonec jsem se dostal při volbě k=1 k tomuto výsledku: 0

http://forum.matematika.cz/upload3/img/2017-06/73745_19182009_1574988562513651_50686395_o%2B%25281%2529.jpg

Otázka tedy zní .. je to správně? a co kdyby bylo zadáno 1/(z+2)*cos(1/z^2) ... tam by bylo k=1 nebo k=2 ... čím se řídím. Děkuji za odpovědi :)

Offline

 

#2 15. 06. 2017 12:13

jelena
Jelena
Místo: Opava
Příspěvky: 29655
Škola: MITHT (abs. 1986)
Pozice: plním požadavky ostatních
Reputace:   83 
 

Re: Výpočet rezidua

Zdravím,

doplň ještě, prosím, popis křivky, podle které se integruje. V derivaci nejspíš je chyba, překontroluj raději v nástrojích. Dále bych řekla, že jde použit větu o součinu funkcí (tvrzení 6.7 v odkazu) a pro z=0 vyšetřovat pouze funkci g(z)=cos(1/z), jelikož f(z)=1/(z+2) v 0 žádný problém nemá.
Mělo by to vycházet stejně za předpokladu, že opravíš derivaci. Stačí tak na úvod? Děkuji.

Offline

 

#3 15. 06. 2017 13:44 — Editoval s-o-k-o-l (15. 06. 2017 13:48)

s-o-k-o-l
Příspěvky: 377
Reputace:   
 

Re: Výpočet rezidua

↑ jelena:
Pochopil jsem to správně takto?
http://forum.matematika.cz/upload3/img/2017-06/27053_res.jpg

Počítal jsem to i starým způsobem a druhá derivace bude nulová, takže by to mělo vycházet stejně.

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson