Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
!! 17.06.2018 (Jel.) Khanova škola zve nadšence ke spolupráci na překladech návodů pro učitele a rodiče.
! 04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
17.01.2016 (Jel.) Rok 2016 s novými a novějšími krystaly od kolegy Pavla!
17.01.2016 (Jel.) Nabídka knih z oborů matematiky, fyziky, chemie
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#101 10. 05. 2018 15:55

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

Hi ↑↑ stuart clark:,
Hint.
You can write your sum as a double sum and switch around the ordre of the summation


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#102 10. 05. 2018 16:06

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

Cvicenie 29. 
Nech $(u_n)_{n \ge 0}$ je realna postupnost taka, ze $u_n >0$.
Predpokladajme, ze $\lim_{n\to +\infty}\frac { u_1 +...+u_n}{nu_n}=l$  kde $l>o$ .
Urcite $\lim_{n\to +\infty}\frac { u_1 +2u_2+...+nu_n}{n^2u_n}$ .


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#103 12. 05. 2018 05:20

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

↑ vanok:
Cvicenie 29 - hint
Polozte $S_n= u_1 +...+u_n$.
A tak mate $ u_1 +2u_2+...+nu_n=nS_n-(S_1 +...+S_n)$ .


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#104 16. 05. 2018 00:24

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

↑ vanok:
Ako zacat riesit toto cvicenie 29?
Mozte najprv odpovedat na otazku:
Rad $\sum_{n}^{}u_n$ je konvergentny alebo diverergentny?


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#105 19. 05. 2018 13:30 — Editoval vanok (19. 05. 2018 13:31)

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

↑ vanok:,
Ukazme, ze $\sum_{n}^{}u_n$ diverguje ( k $+\infty$)


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#106 01. 06. 2018 10:44

stuart clark
Příspěvky: 795
Reputace:   
 

Re: Limitny maraton

Q(30): $\lim_{x\to 0} \frac {2^x-1-x}{x^2}$ without D , L hopital and

series expansion

Offline

 

#107 26. 06. 2018 22:55

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

Cvicenie 31.
Ukazte, ze $\sum_{n=0}^{+\infty} Arctan (\frac 1{1+n+n^2}) $ konverguje.  Urcite k comu.


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#108 28. 06. 2018 13:00 — Editoval stuart clark (28. 06. 2018 13:00)

stuart clark
Příspěvky: 795
Reputace:   
 

Re: Limitny maraton

$\displaystyle \sum^{\infty}_{n=0}\tan^{-1}\bigg(\frac{n+1-n}{1+(n+1)n}\bigg) = \sum^{\infty}_{n=0}\bigg[\tan^{-1}(n+1)-\tan^{-1}(n)\bigg]$

So using Telescopic Series sum, we get $\displaystyle \sum^{\infty}_{n=0}\tan^{-1}\bigg(\frac{1}{1+n+n^2}\bigg) = \frac{\pi}{2}.$

Offline

 

#109 28. 06. 2018 19:48

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#110 28. 06. 2018 19:57 — Editoval vanok (28. 06. 2018 21:26)

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

Cvicenie 32.
Vysetrite ci rad vseobecneho clenu $u_n=\frac{(-1)^n\sqrt n \sin {\frac 1{\sqrt n}}}{n+(-1)^n};n\ge1$ konverguje?


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#111 02. 07. 2018 18:57

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

Hint. 
Mozte vyuzit, ze
$u_n=\frac{(-1)^n}{\sqrt n}.(\sin(\frac 1{\sqrt n})).\frac 1{1+\frac {(-1)^n}n}$


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#112 31. 07. 2018 03:43 — Editoval vanok (31. 07. 2018 23:42)

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

Cvicenie 33.

Nech $(u_n)_{n\in \Bbb N^*}$ je realna postupnost taka, ze pre kazde $n;p$ kladne prirodzene cisla mame $u_n \leq \frac pn+\frac 1p$
Dokazte, ze tato postupnost konverguje k nule.   


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#113 31. 07. 2018 22:47

check_drummer
Příspěvky: 2554
Reputace:   66 
 

Re: Limitny maraton

↑ vanok:
Ahoj, není jasné, jda hodnoty $u_n$ mají být přirozená nebo reálná, ale pokud obecně reálná, tak oscilující posloupnost -1,-2,-1,-2.. limitu nemá a splňuje uvedenou nerovnost. Tak budeme předpokládat, že $u_n$ jsou nezáporná reálná čísla. Potom si myslím, že lze lze volit jako p hodnotu $n^{\frac12}$ a uvedená nerovnost bude tvaru $u_n \leq \frac{2}{n^{\frac{1}{2}}}$ a protože pravá strana má limitu 0, tak levá také.


Nikdy nechibuji.

Offline

 

#114 31. 07. 2018 23:35

laszky
Příspěvky: 801
Škola: MFF UK, FJFI CVUT
Reputace:   50 
 

Re: Limitny maraton

↑ check_drummer:

Ahoj, rekl bych, ze jelikoz ma byt $p\in\mathbb{N}$, bude lepsi pouzit $p=\bigr[\sqrt{n}\,\bigr]$.

Offline

 

#115 31. 07. 2018 23:56

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

Cau ↑ laszky: ,
Ano to je dobry vyber. 

Potom $u_n \leq \frac {E({\sqrt n})}n+\frac 1{E({\sqrt n})}$

Co da $u_n \leq \frac 1{\sqrt n}+\frac 1{\sqrt n-1}$
A zvysok je trivialny.


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#116 03. 08. 2018 05:44

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

Cvicenie 34. 

Vysetrite  rad $\sum u_n $ vseobecneho clenu
$u_n = (-1)^n \sin    (  \frac 1 { (-1)^n   + \sqrt n}) $   


( Inac povedane zistite ci tento rad konverguje alebo diverguje?)


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

#117 06. 08. 2018 20:43

vanok
Příspěvky: 12825
Reputace:   714 
 

Re: Limitny maraton

Hint.
Najprv ukazte ze $u_n$  ( pochopitelne predpokladajte ze $n\ge2$ ) konverguje k $0$
Potom pouzite rozvoj $ u_n$ podla mocnin $\frac 1{\sqrt n}$

Kontrola


Srdecne Vanok
The respect, the politeness are essential qualities...and also the willingness.
Do not judge the other one.
Ak odpovedam na nejaku otazku. MOJ PRINCIP NIE JE DAT ODPOVED ALE UKAZAT AKO SA K ODPOVEDI DOSTAT

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson