Matematické Fórum

Nevíte-li si rady s jakýmkoliv matematickým problémem, toto místo je pro vás jako dělané.

Nástěnka
!! 17.06.2018 (Jel.) Khanova škola zve nadšence ke spolupráci na překladech návodů pro učitele a rodiče.
! 04.11.2016 (Jel.) Čtete, prosím, před vložení dotazu, děkuji!
17.01.2016 (Jel.) Rok 2016 s novými a novějšími krystaly od kolegy Pavla!
17.01.2016 (Jel.) Nabídka knih z oborů matematiky, fyziky, chemie
23.10.2013 (Jel.) Zkuste před zadáním dotazu použít některý z online-nástrojů, konzultovat použití můžete v sekci CAS.

Nejste přihlášen(a). Přihlásit

#1 03. 09. 2019 23:10 — Editoval kiki23 (03. 09. 2019 23:10)

kiki23
Zelenáč
Příspěvky: 20
Reputace:   
 

Integrál arcsin4x

Dobry večer, mohu poprosit o pomoc s integrálem
$arcsin4x$
Zacla jsem řešit per partes
$u ‘ = 1$
$u=x$
$v=arcsin4x$
$v’=\frac{4}{\sqrt{1-16x^2}}$

$=x\cdot arcsin4x - \int_{}^{}x\cdot \frac{4}{\sqrt{1-16x^2}}$
Dal mi to nevychází ...
mužu poprosit o radu jak dal? Substituci?

Offline

  • (téma jako vyřešené označil(a) kiki23)

#2 12. 09. 2019 21:12

Al1
Příspěvky: 7419
Reputace:   520 
 

Re: Integrál arcsin4x

↑ kiki23:
Zdravím,

téma je sice vyřešené, ale třeba pro ostatní:

Jednak: derivace se v LaTeXu zapíše pomocí apostrofu $u'$.

$4\int_{}^{}\frac{x}{\sqrt{1-16x^2}}$ lze řešit substitucí, např. $x=\frac{1}{4}\sin (t)$

Offline

 

Zápatí

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson